Electronic band alignment and electron transport in Cr/BaTiO3/Pt ferroelectric tunnel junctions

Electroresistance in ferroelectric tunnel junctions is controlled by changes in the electrostatic potential profile across the junction upon polarization reversal of the ultrathin ferroelectric barrier layer. Here, hard X-ray photoemission spectroscopy is used to reconstruct the electric potential barrier profile in as-grown Cr/BaTiO3(001)/Pt(001) heterostructures. Transport properties of Cr/BaTiO3/Pt junctions with a sub-μm Cr top electrode are interpreted in terms of tunneling electroresistance with resistance changes of a factor of ∼30 upon polarization reversal. By fitting the I-V characteristics with the model employing an experimentally determined electric potential barrier we derive the step height changes at the BaTiO3/Pt (Cr/BaTiO3) interface +0.42(−0.03) eV following downward to upward polarization reversal.

 

https://doi.org/10.1063/1.4792525

 

Citation:

A. Zenkevich et. al. "Electronic band alignment and electron transport in Cr/BaTiO3/Pt ferroelectric tunnel junctions", Appl. Phys. Lett. 102, 062907 (2013); https://doi.org/10.1063/1.4792525

СМИ о нас

Feed not found.