Analysis of the crystal lattice instability for cage–cluster systems using the superatom model

We have investigated the lattice dynamics for a number of rare-earth hexaborides based on the superatom model within which the boron octahedron is substituted by one superatom with a mass equal to the mass of six boron atoms. Phenomenological models have been constructed for the acoustic and lowenergy optical phonon modes in RB6 (R = La, Gd, Tb, Dy) compounds. Using DyB6 as an example, we have studied the anomalous softening of longitudinal acoustic phonons in several crystallographic directions, an effect that is also typical of GdB6 and TbB6. The softening of the acoustic branches is shown to be achieved through the introduction of negative interatomic force constants between rare-earth ions. We discuss the structural instability of hexaborides based on 4f elements, the role of valence instability in the lattice dynamics, and the influence of the number of f electrons on the degree of softening of phonon modes.

Original Russian Text © D.A. Serebrennikov, E.S. Clementyev, P.A. Alekseev, 2016, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2016, Vol. 150, No. 3, pp. 526–535.

 

https://doi.org/10.1134/S1063776116070220

 

Citation:

Serebrennikov, D.A., Clementyev, E.S. & Alekseev, P.A. J. Exp. Theor. Phys. (2016) 123: 452. https://doi.org/10.1134/S1063776116070220

СМИ о нас

Feed not found.